聚焦人工智能技术前沿与治理 中外专家学者国际论坛建言献策******
中新网北京12月5日电 (记者 孙自法)2021人工智能合作与治理国际论坛“人工智能技术前沿与治理”主论坛,12月5日在清华大学以线上线下结合方式举行,中外人工智能(AI)领域专家学者聚焦人工智能技术前沿与治理这一主题,发表主旨演讲建言献策,并深入研讨交流。
美国国家科学院院士、美国艺术与科学院院士、约翰·贝茨·克拉克奖得主、斯坦福大学商学院技术经济学教授、以人为本人工智能研究所副所长苏珊·阿西(Susan Athey)认为,大学在指导人工智能创新方面可以发挥优先引导的关键作用。由于私营部门的技术人员缺乏伦理、哲学方面的训练,难以开发出具有可解释性的算法框架,深化这类研究能够在人工智能治理的问题识别、建立开发实践框架、提供指引等方面发挥重要作用。此外,由于数据可以带来巨大的规模效应,当前“软件即服务”的平台经济模式已非常普及。人工智能和数据需求可能带来“伪”市场集中,因此,未来对“机器换人”的预测非常具有挑战性,需要重新关注和思考人工智能如何用于应对老龄化等公共管理问题,使基于人工智能的公共服务变得更加高效。
国际人工智能协会前主席、清华大学人工智能国际治理研究院学术委员约兰达·吉尔(Yolanda Gil)指出,由于人类对智能机制认知不足、智能行为本身的复杂性、观测手段的有限性以及个体知识、职业、信仰、文化背景等的差异性,导致当前人工智能研究中面临着一系列挑战,因此,需要加强人工智能基础研究工作,这需要跨领域、跨学科的共同努力。当前,理解人工智能机理和构建人工智能世界模型是人工智能研究面临的两大挑战。一方面,理解人工智能机理需要构架“感知-思考-行动”的智能模型,加强对大脑思维机理的理解,建议借鉴神经科学研究联合体的有益经验,建立全球性的人工智能研究数据库,形成全球共享的研究社区。另一方面,构建人工智能世界模型则需要建立在人类经验、社会习俗、专业技能的基础上,建议建立类似于自由协作式的知识库,通过全民民众参与,推动知识在全球层面共享。
中国科学院院士、清华大学人工智能研究院名誉院长、清华大学人工智能国际治理研究院学术委员张钹表示,由于深度学习等算法存在不可解释性,导致前两代人工智能算法存在着公平性、安全性问题和不可靠、不可信等缺陷。发展第三代人工智能关键在于发展可解释的、鲁棒的人工智能理论和方法,开发安全、可信、可靠、可扩展的人工智能技术,以“数据驱动+知识驱动”构建支持可解释的人工智能算法的深度学习平台,赋能人工智能安全与防御优化。从数据中真正获取智能要靠知识的帮助与引导,并需要政策法规对数据使用的正确规范,充分利用知识、数据、算法和算力四个要素结合,推动人工智能的创新发展。
中国工程院院士、北京大学信息科学技术学院院长、鹏城实验室主任、清华大学人工智能国际治理研究院学术委员高文认为,当前人工智能发展处于新一代人工智能向强人工智能发展的关键阶段,至2030年,中国人工智能发展总体要达到世界领先水平。从战略问题看,中美欧三方在人工智能人才、研究、开发、应用、硬件、数据等方面竞争激烈,当前中国人工智能发展在战略政策、数据资源、应用场景、潜力人才方面具有优势,而在基础理论、原创算法、关键部件、国际平台、高级人才等方面还存在短板。从战术问题看,人工智能2.0需采用基于大数据的统计AI解决大规模AI应用需求,鼓励各种可能的强人工智能探索,“可解释机器学习+推理”和“仿生系统+AI大算力”是可能的技术路线图;在安全问题层面,强人工智能的安全风险主要来源于模型的不可解释性、算法和硬件的不可靠性和自主意识的不可控性,人工智能2.0应采用DPI与“防水堡技术”解决数据安全与隐私保护,重视探索人工智能伦理问题,并基于“理论-技术研究-应用”的阶段性采取不同的风险防范策略。
美国国家工程院外籍院士、英国皇家工程院外籍院士、清华大学高等研究院双聘教授沈向洋表示,AI已经应用于生活和工作的方方面面,目前甚至在法律上也具有一定的应用,比如美国已经有很多法庭用机器学习和人工智能方法帮助判刑,包括决定刑期这样非常重要的问题。但是我们还无法理解一些AI决策的缘由。未来发展过程中我们不能只看见AI决策的“黑箱”,应该打开“黑箱”,探究和理解其中的具体内容和因果关系,我们一定要做可解释性的AI。同时,他提到负责任的AI应具备公平性、可靠性、隐私性、包容性、透明性和责任性的特点,作为新兴领域,还需要向其他领域学习,从而更好的服务于人类。
中国工程院外籍院士、清华大学智能产业研究院院长、人工智能国际治理研究院学术委员张亚勤指出,“碳中和”是人类能源结构的又一次变革。“碳中和”既是可持续发展的必然选择,又是产业结构调整和发展的重大机遇。企业在“碳中和”背景下都面临转型增效的压力。人工智能+物联网是智联网,智联网可以赋能绿色计算,助力“碳中和”。智联网助力“碳中和”主要包括三个环节:首先,由数据驱动和人工智能优化引擎来实现智能决策。其次,多参数全链系统配置优化。最后,通过多源多维异构感知融合实现智能感知。智联网可用于能源融合、降低ICT产业的碳排放和推动新兴产业发展等。他还介绍了智联网赋能的绿色计算平台的框架,该平台包括人工智能驱动节能减排和高能效人工智能系统,应用路径包括绿色园区和工业节能。
2021人工智能合作与治理国际论坛由清华大学主办,清华大学人工智能国际治理研究院承办,国际支持机构为联合国开发计划署。论坛为期两天,设有三场主论坛、一场特别论坛和七场专题论坛。“人工智能技术前沿与治理”主论坛由清华大学计算机科学与技术系教授、人工智能研究院常务副院长孙茂松主持。(完)
深圳拟推“共有产权住房”******
羊城晚报讯 记者李晓旭报道:1月17日下午,深圳市住建局官网发布四份与保障性住房相关的征求意见文件。根据其中的《深圳市共有产权住房管理办法(征求意见稿)》,深圳拟推出共有产权住房,为封闭流转、满五年可转,售价约为土地出让时市场价的一半。
政府与购房人共有产权
该意见稿对“共有产权住房”作出定义:指政府提供政策支持,主要采用市场化方式建设筹集,限定套型面积、销售价格、使用和处分权利等,面向符合条件的居民供应,实行政府与购房人按份共有产权的住房。
共有产权住房主要面向符合条件的户籍居民供应。深圳市政府根据住房供需情况,逐步将常住居民纳入供应范围。
对于申请条件,要求深户、在深缴纳社保满5年、无自有住房、未在深圳市享受过购房优惠政策、5年内未在深圳市转让过或因离婚分割过自有住房等。
共有产权住房销售价格按照土地出让时市场参考价格的50%左右确定,单套住房销售价格根据项目销售均价,结合楼层、朝向等因素确定。
签订合同满5年可转让
共有产权住房实行产权按份共有,购房人产权份额按照项目销售均价占市场参考价格的比例确定,原则上不低于50%,同批次销售的同一项目的产权份额相同;其余部分为政府产权份额。
共有产权住房实行产权封闭流转,签订买卖合同未满5年需退出的,应当向代持机构申请收购个人产权份额;签订买卖合同满5年的,购房人可面向符合条件的对象转让个人产权份额或者申请收购。
中低收入者买房容易了
记者梳理发现,深圳现行保障性住房为:安居型商品房、可售型人才房、公共租赁住房。根据最新拟订的四份文件,深圳保障性住房体系将演变为公共租赁住房、保障性租赁住房、共有产权住房三大系统。
其中,关于共有产权住房的推出,拟将取代原有的安居型商品房及可售型人才房相关制度。前述意见稿明确提出:本办法施行之日起,不再安排建设安居型商品房。
广东省城乡规划院住房政策研究中心首席研究员李宇嘉指出,深圳拟推共有产权住房,本质上也是在完善保障房体系,让中低收入群体能够降低购房成本,将对深圳楼市产生长期影响。
(文图:赵筱尘 巫邓炎)